
The Implementation of XChaCha20-Poly1305 in
MQTT Protocol

Ignatius Timothy Manullang (13517044)1

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113517044@stei.itb.ac.id

Abstract—Message Queue Telemetry Transport (MQTT) is a
network protocol that transports messages between devices
through publish-subscribe, which is designed to be able to run at
low power and low bandwidth. The MQTT protocol only provides
authentication mechanism for security as a default therefore it
does not guarantee data privacy and data integrity during data
transmission in the implementation of the MQTT protocol.
Hence, in order to provide data privacy and data integrity during
data transmission, encryption and authentication is needed. The
Authenticated Encryption with Associated Data (AEAD)
algorithm, XChacha20-Poly1305, is suggested to be implemented
with the MQTT Protocol. This is because XChaCha20-Poly1305 is
fast, well suited to low-powered devices and in real-time
communications, and more secure than the standard
ChaCha20-Poly1305. Based on testing, the XChaCha20-Poly1305
algorithm is able to deal with data changes, data insertion and
data substitution attacks. This paper presents the results of the
XChaCha20-Poly1305 algorithm which has good performance
based on the value of memory usage and resistance to attacks.

 Keywords—IoT, MQTT, Security, XChaCha20-Poly1305

I. INTRODUCTION
The Internet of Things (IoT) is a system of computing

devices, objects, mechanical and digital machines, people or
animals that are interrelated and are provided with unique
identifiers and the ability to transfer data over a network
without requiring human-to-human or human-to-computer
interaction. IoT is increasingly used since it helps people. [1]

IoT devices communicate with each other using protocols.
There are a number of protocols which can be used. One of
those protocols is the Message Queue Telemetry Transport
(MQTT) protocol. The MQTT protocol is a lightweight and
flexible network protocol due to the fact that it uses a
publish-subscribe model which decouples the publisher and
subscriber therefore the clients are very small, therefore it can
be run at low power and low bandwidth, which is a good fit for
IoT. Since the MQTT protocol is a good fit for IoT, it is
increasingly used. [2]

However, the MQTT protocol itself has disadvantages. One
of which is that the MQTT protocol only serves an
authentication mechanism for its security. Therefore, by
default, encryption in data transfer is not present which makes
data privacy and integrity a problem in the implementation of
the MQTT protocol. [3]

One of the solutions that can be implemented to solve data
privacy and integrity is to implement an Authenticated
Encryption with Associated Data (AEAD) algorithm. This type
of algorithm has the capability to perform authenticated
encryption which provides a way to protect data privacy and
integrity [7]. An example of an AEAD algorithm is
ChaCha20-Poly1305, proposed through RFC 7539 [9] which
is a combination of ChaCha20 stream cipher algorithm and
Poly1305 MAC algorithm. Currently, the ChaCha20-Poly1305
algorithm acts as a replacement for AES, should it become
vulnerable, and has been used by Google as a replacement for
RC4 [4] which is vulnerable to attacks and prohibited by RFC
7465 [5].

However, there is a more secure AEAD algorithm than
ChaCha20-Poly1305, which is XChaCha20-Poly1305.
XChaCha20-Poly1305 is an AEAD algorithm which is a
combination of XChaCha20 stream cipher algorithm and
Poly1305 MAC algorithm. It is more secure due to the fact that
it uses an extended nonce, which is a192-bit nonce, over the
92-bit nonce used by ChaCha20-Poly1305 [12]. Therefore, the
implementation of XChaCha20-Poly1305 in MQTT protocol,
which is discussed in this paper, is expected to provide better
data security solutions, especially in terms of privacy and data
integrity, over ChaCha20-Poly1305.

II. BASIC THEORY

A. MQTT
Message Queue Telemetry Transport (MQTT) Protocol is an
OASIS standard messaging protocol that is designed for
communication in Machine to Machine (M2M) and Internet of
Things (IoT). It runs over TCP/IP or over other network
protocols that provide ordered, lossless, bi-directional
connections. It uses the publish/subscribe message pattern
which provides one-to-many message distribution and
decoupling of applications. It has advantages such as being
extremely lightweight and efficient due to having MQTT
clients that are very small and require minimal resources so
that it can be used on small microcontrollers and due to having
MQTT message headers that are small to optimize network
bandwidth, being able to scale to connect with millions of IoT
devices, being able to support bi-directional communications
that allows for messaging between device to cloud and cloud to
device and makes for easy broadcasting messages to groups of
things, being able to reliably deliver message, which is

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

important for many IoT use cases, through 3 defined quality of
service levels: 0 - at most once, 1 - at least once and 2 - exactly
once, and being able to easily incorporate encryption methods
to encrypt messages and incorporate modern authentication
protocols to authenticate clients. [10]

B. Authenticated Encryption with Associated Data
(AEAD) Algorithm
The Authenticated Encryption with Associated Data (AEAD)
Algorithm is a type of algorithm that has the capability to
perform authenticated encryption, which is a form of
encryption that, in addition to providing confidentiality for the
plaintext that is encrypted, provides a way to check its integrity
and authenticity, alongside the ability to check the integrity
and authenticity of some Associated Data (AD) or "additional
authenticated data" that is not encrypted. [7]

This type of algorithm was designed in order to fulfill the
requirement of both confidentiality, which is a security service
that ensures that data is available only to those authorized to
obtain it, and message authentication, which is the service that
ensures that data has not been altered or forged by
unauthorized entities, by many cryptographic applications. [7]

The interface of an AEAD algorithm includes two operations,
authenticated encryption and authenticated decryption, which
has the default input and output of octet strings or ‘sequence of
bytes’. An implementation of an AEAD algorithm may accept
additional inputs, however such extensions must not affect
interoperability with other implementations. [7]

The authenticated encryption operation in AEAD algorithm
has four inputs, each of which is an octet string:

1. A secret key K, which has to be generated using a
method that is uniformly random or pseudorandom

2. A nonce N, which has to be distinct, unless each and
every nonce is zero-length.

3. A plaintext P, which contains the data to be encrypted
and authenticated

4. The associated data A, which contains the data to be
authenticated, but not encrypted.

It has a single output:
1. A ciphertext C, which is at least as long as the

plaintext, or an indication that the requested
encryption operation could not be performed. [7]

The authenticated decryption operation in AEAD algorithm
has four inputs, which are K, N, C, and A, as defined above,
and a single output which is either a plaintext value P or a
special symbol FAIL that indicates that the inputs are not
authentic. [7]

C. Message Authentication Code
Message Authentication Code (MAC) is an identification code
for message authentication as proof of data and message
integrity obtained through processing the data or message
using a symmetric private key. The MAC code will then be
combined with the data or message and sent to the receiver.
The receiver will use the same private key to generate the

MAC code of the received data or message and compare it
with the MAC code received from the sender. [3]

The process of using MAC for authentication is shown in the
following illustration.

Figure 1. The process of using MAC for authentication [8]

D. ChaCha
Chacha is a stream cipher which is developed by D. J.
Bernstein in 2008. It was also published through RFC7539 by
Y. Nir from Check Point and A. Langley from Google, Inc. in
May 2015. [5] ChaCha’s initial state includes a 128-bit
constant, a 256-bit key, a 64-bit counter, and a 64-bit nonce,
arranged as a 4x4 matrix of 32-bit words, which is shown in
the table below, alongside the matrix index from 0 to 15. [10]

Table 1. Chacha matrix, with index from 0 to 15 [10]

Chacha, in its quarter-round QR(state, a, b, c, d), also uses 4
additions, 4 xors and 4 rotations to invertibly update 4 32-bit
state words. In particular, ChaCha updates each word twice
rather than once, as follows:
ChaCha Quarter Round in Pseudocode [10]

Through these operations, the ChaCha quarter-round diffuses
changes through bits with an average change of 12.5 output
bits. Moreover, the fact that two of the rotates are multiples of
8 (16 and 8), allows for a small optimization on some
architectures including x86 [11]. In addition, the input format
has been arranged to support an efficient SSE implementation
optimization, in which alternating rounds down columns and
across rows is replaced by alternating rounds down columns
and along diagonals. [10]

ChaCha uses a double round which is shown below
ChaCha Double Round in Pseudocode [10]

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

(0) constant (1) constant (2) constant (3) constant

(4) key (5) key (6) key (7) key

(8) key (9) key (10) key (11) key

(12) input (13) input (14) input (15) input

a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7;

// Odd round
QR(state, 0, 4, 8, 12) // 1st column
QR(state, 1, 5, 9, 13) // 2nd column

E. ChaCha20
Chacha20 is a variant of ChaCha which includes a block
function that transforms a ChaCha20 state by running 10
iterations of ChaCha double rounds.

The input of a ChaCha20 block function includes:

1. A 256-bit key which is treated as a concatenation of
eight 32-bit little-endian integers

2. A 96-bit nonce which is treated as a concatenation of
three 32-bit little-endian integers

3. A 32-bit block count parameter which is treated as a
32-bit little-endian integer

The output is 64 random-looking bytes. [9]

In pseudocode, the ChaCha20 Block Function is shown below.

ChaCha20 Block Function in Pseudocode. [9]

For each block, the ChaCha20 Encryption Algorithm calls the
ChaCha20 block function with the same key and nonce. After
each block, the block counter parameter is increased. The
resulting state is serialized by writing the numbers in
little-endian order which creates a keystream block.

The input of the ChaCha20 Encryption Algorithm includes:

1. A 256-bit key
2. A 32-bit initial counter
3. A 96-bit nonce.
4. An arbitrary-length plaintext

The output is the ciphertext with the same length as the
plaintext.

In pseudocode, the ChaCha20 Encryption Algorithm is shown
below.

ChaCha20 Encryption Algorithm in Pseudocode [9]

The ChaCha20 Decryption Algorithm is similar to the
ChaCha20 Encryption Algorithm, with the only difference
being the plaintext being replaced with the ciphertext. [9]

F. Poly1305
Poly1305 is a message authentication code (MAC) which is
created by D. J. Bernstein. It takes a 32-byte one-time key and
message and produces a 16-byte tag. This tag is used to
authenticate the message.[9]

The input of Poly1305 includes:

1. An arbitrary length message
2. A 256-bit one-time key, which will be partitioned into

two equal parts of 16-octet little endian numbers, “r”
and “s”, and the pair (r, s) should be unique and
unpredictable for each invocation. “r” will then be
modified with a clamp function clamp(r) before being
used since:
2.1. r[3], r[7], r[11], and r[15] are required to

have their top four bits clear (be smaller than
16)

2.2. r[4], r[8], and r[12] are required to have their
bottom two bits clear (be divisible by 4)

The output is a 128-bit tag. [9]

The process is as follows:

1. First, the "r" value should be clamped.
2. Next, set the constant prime "P" be 2^130-5:

3fffffffffffffffffffffffffffffffb. Also set a variable
"accumulator" to zero.

3. Next, divide the message into 16-byte blocks. The
last one might be shorter:

4. Read the block as a little-endian number.
5. Add one bit beyond the number of octets. For a

16-byte block this is equivalent to adding 2^128 to the
number. For the shorter block it can be 2^120, 2^112,
or any power of two that is evenly divisible by 8, all
the way down to 2^8.

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

QR(state, 2, 6, 10, 14) // 3rd column
QR(state, 3, 7, 11, 15) // 4th column
// Even round
QR(state, 0, 5, 10, 15) // diagonal 1 (main diagonal)
QR(state, 1, 6, 11, 12) // diagonal 2
QR(state, 2, 7, 8, 13) // diagonal 3
QR(state, 3, 4, 9, 14) // diagonal 4

inner_block (state):
 QR(state, 0, 4, 8,12)
 QR(state, 1, 5, 9,13)
 QR(state, 2, 6,10,14)
 QR(state, 3, 7,11,15)
 QR(state, 0, 5,10,15)
 QR(state, 1, 6,11,12)
 QR(state, 2, 7, 8,13)
 QR(state, 3, 4, 9,14)
 end

chacha20_block(key, counter, nonce):
 state = constants | key | counter | nonce
 working_state = state
 for i=1 upto 10
 inner_block(working_state)
 end
 state += working_state
 return serialize(state)
 end

chacha20_encrypt(key, counter, nonce, plaintext):
 for j = 0 upto floor(len(plaintext)/64)-1
 key_stream = chacha20_block(key, counter+j, nonce)
 block = plaintext[(j*64)..(j*64+63)]
 encrypted_message += block ^ key_stream
 end
 if ((len(plaintext) % 64) != 0)
 j = floor(len(plaintext)/64)
 key_stream = chacha20_block(key, counter+j, nonce)
 block = plaintext[(j*64)..len(plaintext)-1]
 encrypted_message +=
(block^key_stream)[0..len(plaintext)%64]
 end
 return encrypted_message
 end

6. If the block is not 17 bytes long (the last block), pad it
with zeros. This is meaningless if you are treating the
blocks as numbers.

7. Add this number to the accumulator.
8. Multiply by "r"
9. Set the accumulator to the result modulo p. To

summarize: Acc = ((Acc+block)*r) % p.
10. Finally, the value of the secret key "s" is added to the

accumulator, and the 128 least significant bits are
serialized in little-endian order to form the tag. [9]

In pseudocode, the Poly1305 algorithm is shown below.

Poly1305 algorithm in pseudocode [9]

G. ChaCha20-Poly1305
ChaCha20-Poly1305 is an AEAD algorithm which combines
ChaCha20 stream cipher algorithm and Poly1305 MAC
algorithm. [9]

The input of encryption with ChaCha20-Poly1305 includes:

1. A 256-bit key
2. A 96-bit nonce - different for each invocation with the

same key.
3. An arbitrary length plaintext
4. Arbitrary length additional authenticated data (AAD)

[9]

The process of encryption with ChaCha20-Poly1305 is as
follows:

1. First, a Poly1305 one-time key is generated from the
256-bit key and nonce

2. Next, the ChaCha20 encryption function is called to
encrypt the plaintext, using the same key and nonce,
and with the initial counter set to 1.

3. Finally, the Poly1305 function is called with the
Poly1305 key calculated above, and a message
constructed as a concatenation of the following:
3.1. The AAD
3.2. padding1 - the padding is up to 15 zero

bytes, and it brings the total length so far to
an integral multiple of 16. If the length of
the AAD was already an integral multiple of
16 bytes, this field is zero-length.

3.3. The ciphertext
3.4. padding2 - the padding is up to 15 zero

bytes, and it brings the total length so far to
an integral multiple of 16. If the length of
the ciphertext was already an integral
multiple of 16 bytes, this field is zero-length.

3.5. The length of the additional data in octets (as
a 64-bit little-endian integer).

3.6. The length of the ciphertext in octets (as a
64-bit little-endian integer). [9]

The output of encryption with ChaCha20-Poly1305 is as
follows:

1. A ciphertext of the same length as the plaintext.
2. A 128-bit tag, which is the output of the Poly1305

function. [9]

In pseudocode, the ChaCha20-Poly1305 algorithm is as
follows:

ChaCha20-Poly1305 algorithm in pseudocode [9]

In ChaCha20-Poly1305, the decryption algorithm is similar to
the encryption algorithm, with the following differences:

1. The roles of ciphertext and plaintext are reversed, so
the

2. ChaCha20 encryption function is applied to the
ciphertext, producing the plaintext.

3. The Poly1305 function is still run on the AAD and the
ciphertext, not the plaintext.

4. The calculated tag is bitwise compared to the received
tag. The message is authenticated if and only if the
tags match.

H. XChaCha20-Poly1305
XChaCha20-Poly1305 is an AEAD algorithm, and a variant of
ChaCha20-Poly1305 that uses an extended nonce, which is a
192-bit nonce, instead of a 96-bit nonce. It combines the
XChaCha20 stream cipher algorithm and the Poly1305 MAC
algorithm. [12]

The algorithm for XChaCha20-Poly1305 is as follows

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

clamp(r): r &= 0x0ffffffc0ffffffc0ffffffc0fffffff
 poly1305_mac(msg, key):
 r = (little_endian_bytes_to_num(key[0..15])
 clamp(r)
 s = little_endian_num(key[16..31])
 accumulator = 0
 p = (1<<130)-5
 for i=1 upto ceil(msg length in bytes / 16)
 n = little_endian_bytes_to_num(msg[((i-1)*16)..
(i*16)] | [0x01])
 a += n
 a = (r * a) % p
 end
 a += s
 return num_to_16_le_bytes(a)
 end

pad16(x):
 if (len(x) % 16)==0
 then return NULL
 else return copies(0, 16-(len(x)%16))
 end

 chacha20_aead_encrypt(aad, key, iv, constant,
plaintext):
 otk = poly1305_key_gen(key, iv, constant)
 nonce = constant | iv
 ciphertext = chacha_encrypt(key, 1, nonce, plaintext)
 mac_data = aad | pad16(aad)
 mac_data |= ciphertext | pad16(ciphertext)
 mac_data |= num_to_4_le_bytes(aad.length)
 mac_data |= num_to_4_le_bytes(ciphertext.length)
 tag = poly1305_mac(mac_data, otk)
 return (ciphertext, tag)

1. Pass the key and the first 16 bytes of the 24-byte
nonce to HChaCha20 to obtain the subkey.

2. Use the subkey and remaining 8 bytes of the nonce
(prefixed with 4 NUL bytes) with
ChaCha20-Poly1305 algorithm as normal. [12]

The HChaCha20 algorithm used in XChaCha20-Poly1305 is
an intermediary step towards XChaCha20. HChaCha20 is
initialized the same way as the ChaCha cipher, except that
HChaCha20 uses a 128-bit nonce and has no counter. Instead,
the block counter is replaced by the first 32 bits of the nonce.
[8]

The process of HChaCha20 algorithm after initialization is as
follows:

1. Proceed through the ChaCha rounds as usual.
2. Once the 20 ChaCha rounds have been completed, the

first 128 bits and last 128 bits of the ChaCha state
(both little-endian) are concatenated, and this 256-bit
subkey is returned.[8]

The XChaCha20 algorithm used in XChaCha20-Poly1305 in
pseudocode is as follows:

XChaCha20 encryption algorithm used in
XChaCha20-Poly1305 in pseudocode [12]

III. SYSTEM DESIGN

The system which is going to be implemented contains the
MQTT Protocol with XChaCha20-Poly1305 algorithm. The
components of the MQTT protocol are the publisher, broker
and subscriber. The publisher will send data and MAC to the
broker. The broker will receive data from the publisher. The
subscriber will receive data from the broker and validate MAC
based on the data received from the broker.

The XChaCha20-Poly1305 algorithm will be applied in the
publisher and subscriber, to check the data security and
integrity on the publisher and subscriber by
encryption/decryption and MAC code generation. The
implementation design is shown in the Figure below.

The system is illustrated in the image below.

Figure 2. System Overview

The workflow of the components of the system, the publisher
and the subscriber, which is going to be implemented, is shown
in Figures 3 and 4.

Figure 3. Publisher Workflow

Figure 4. Subscriber Workflow

IV. TESTING AND ANALYSIS

A. Test Vector Testing
Test Vector Testing is done to make sure the
XChaCha20-Poly1305 that is used in this implementation is
correct based on the specification of the creator. The encrypted
message and MAC generated from the created
XChaCha20-Poly1305 will be compared with a test vector
which refers to a test vector parameter which has been
generated by the designer of the XChaCha20-Poly1305
algorithm [8]. The result of the test is shown below.

Table 2. Test Vector for XChaCha20-Poly1305

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

xchacha20_encrypt(key, nonce, plaintext):
 subkey = hchacha20(key, nonce[0:15])
 chacha20_nonce = "\x00\x00\x00\x00" + nonce[16:23]
 return chacha20_encrypt(subkey, 1, chacha20_nonce,
plaintext)

Based on the results, in which all scenarios that have been
carried out show the same results between the comparison of
the test parameter input with the output vector, the
XChaCha20-Poly1305 algorithm has been created correctly.

B. Algorithm Execution Time Testing
Algorithm Execution Time Testing is used to find out how
long it took the XChaCha20-Poly1305 algorithm to
encrypt/decrypt the message and generate MAC codes. The
algorithm execution test scenario is done by running the
XChaCha20-Poly1305 program code using the test vector
input which is implemented in the publisher and subscriber
sections 30 times with 10 iterations. The execution time
calculation will start when the key and message are received as
algorithm input until the message is encrypted and the MAC
code is generated.

The results of the algorithm execution time test is the average
time of 1.7317851384480794 ms , maximum time of
6.967306137084961 ms, and minimum time of
0.98419189453125 ms in the publisher, and the average time
of 0.99968973 ms , maximum time of 1.0013580322265625
ms, and minimum time of 0.9984970092773438 ms in the
subscriber. This shows that there is an insignificant difference

in execution time from using the XChaCha20-Poly1305
algorithm for the publisher and the subscriber.

C. System Performance Testing
System performance testing is conducted to compare system
performance and network performance in algorithmic
processing based on system memory usage, time and memory
data integrity checking. The results of the memory usage test
are obtained from 30 publish-subscribe with 10 iterations when
the system uses the encryption algorithm and without the
encryption algorithm on the test vector. The results of the
memory usage test are shown in the table below

Table 3. Memory Usage

This can be seen from the test results using the
XChaCha20-Poly1305 algorithm memory which uses
0.01019431537 MB of memory from the publisher and
0.001024 MB of memory from the subscriber.

Time and memory tests on data privacy by encryption and
decryption and data integrity checks, on the test vector, are
obtained from published messages on concurrent use of 30, 60,
90, 120, and 150 publishers. The results of the time and
memory checks for data integrity are shown in the table below.

Table 4. Time and Memory on Data Privacy by Encryption and

Decryption and Data Integrity Checks

It can be concluded from the table that the average increase in
time when checking data integrity is 0.012250721454620361
seconds at each multiple of 30 publisher usage and the average
increase in memory usage when checking data integrity is
0.050283999999999995 MB for each multiple of 30 publisher
usage

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

Test Vector

No Input Output Validit
y

1 Plaintext =
4c616469657320616e
642047656e746c656d
656e206f6620746865
20636c617373206f66
202739393a20496620
4920636f756c64206f
6666657220796f7520
6f6e6c79206f6e65207
4697020666f7220746
865206675747572652
c2073756e736372656
56e20776f756c64206
2652069742e

Ciphertext =
bd6d179d3e83d4
3b9576579493c0e
939572a1700252
bfaccbed2902c21
396cbb731c7f1b0
b4aa6440bf3a82f
4eda7e39ae64c67
08c54c216cb96b7
2e1213b4522f8c9
ba40db5d945b11
b69b982c1bb9e3f
3fac2bc369488f7
6b2383565d3fff9
21f9664c97637da
9768812f615c68b
13b52e

Tag =
c0875924c1c7987
947deafd8780acf
49

Valid

AAD =
50515253c0c1c2c3c4
c5c6c7

key =
808182838485868788
898a8b8c8d8e8f9091
92939495969798999a
9b9c9d9e9f

nonce =
404142434445464748
494a4b4c4d4e4f5051
525354555657

Memory Publisher Subscriber

Using
XChaCha
20-Poly1
305

Without
XChaCha
20-Poly1
305

Using
XChaCha
20-Poly1
305

Without
XChaCha
20-Poly1
305

Average
(MB)

0.045158
4

0.034964
0846252
4414

0.032870
4

0.031846
4

Number of
Publishers

30 60 90 120 150

Time(s) 0.011
90328
59802
2461

0.0239
05038
83361
8164

0.035
90583
80126
9531

0.0491
88899
99389
65

0.0609
061717
987060
55

Memory
(MB)

0.185
0368

0.2301
952

0.286
6496

0.3319
744

0.3861
728

D. Security Testing
Security testing is carried out to ensure the security of the
system that is being built. The attack that will be used to test
security is the Man in The Middle Attack (MITM) attack
against a broker with the arp spoofing method that allows
message change, insertion and substitution. The message that
will be used is the test vector. This arp spoofing attack uses the
Ettercap application.

The result of the first attack, which is the message change
attack, which involves changing the hex plaintext from
“4c616469657320616e642047656e746c656d656e206f662074
686520636c617373206f66202739393a204966204920636f756
c64206f6666657220796f75206f6e6c79206f6e6520746970206
66f7220746865206675747572652c2073756e73637265656e20
776f756c642062652069742e” from the test vector, to
“4c616469657320616e642047656e746c656d656e206f662074
686520636c617373206f66202739393a204966204920636f756
c64206f6666657220796f75206f6e6c79206f6e6520746970206
66f7220746865206675747572652c2073756e73637265656e20
776f756c642062652069742f”, with the last hex is changed
from “2e” to 2f”, is as follows.

Figure 5. Result from the message change attack

The result of the second attack, which is message insertion
attack, so that the hex plaintext
“4c616469657320616e642047656e746c656d656e206f662074
686520636c617373206f66202739393a204966204920636f756
c64206f6666657220796f75206f6e6c79206f6e6520746970206
66f7220746865206675747572652c2073756e73637265656e20
776f756c642062652069742e” becomes
"4c616469657320616e642047656e746c656d656e206f662074
686520636c617373206f66202739393a204966204920636f756
c64206f6666657220796f75206f6e6c79206f6e6520746970206
66f7220746865206675747572652c2073756e73637265656e20
776f756c642062652069742e4c616469657320616e642047656
e", with an insertion of “4c616469657320616e642047656e",
is as follows.

Figure 6. Result from the message insertion attack

The result of the third attack, which is message substitution, so
that the hex plaintext
“4c616469657320616e642047656e746c656d656e206f662074
686520636c617373206f66202739393a204966204920636f756
c64206f6666657220796f75206f6e6c79206f6e6520746970206
66f7220746865206675747572652c2073756e73637265656e20
776f756c642062652069742e” is substituted using the ROT13
algorithm, is as follows.

Figure 7. Result from the message substitution attack

It can be seen from the results that the subscriber has received
the message from the broker and the subscriber displays that

the MAC from the publisher and the subscriber does not match
because the subscriber has a data integrity check by comparing
the value of the MAC from the publisher and the subscriber.

V. CONCLUSION

The subscriber is able to identify message integrity by
calculating the MAC value based on the received message
value. MAC can be calculated by inputting key, integer, nonce
and message received. If the MAC output created by the
subscriber is the same as the MAC generated by the publisher,
then the integrity of the message received from the broker can
be guaranteed and has not undergone changes, insertions
and/or substitutions during message transmission by the
broker.

The XChaCha20-Poly1305 algorithm, when used for
encryption / decryption and data integrity checking in the
MQTT protocol, has an average time of 1.7317851384480794
ms to generate MAC for the publisher and the subscriber of
0.99968973 ms. Meanwhile, the increase in memory usage
when the XChaCha20-Poly1305 algorithm is applied to the
system is 0.01019431537 MB for the publisher and 0.001024
MB for the subscriber. The time performed for data integrity
checks performed by subscribers is increased by
0.012250721454620361 seconds for every 30 publishers, and
memory usage is increased by 0.050283999999999995 MB for
every 30 publishers.

VI. ACKNOWLEDGMENT
The author is grateful to The One Almighty God for the
blessing that has been given so that this paper can be finished
successfully. The author is also grateful to Dr. Ir. Rinaldi
Munir, MT., our lecturer in IF4020 Cryptography - 1st
Semester of Academic Year 2020/2021, for the knowledge and
the time which are shared with the college students attending
the course. The author is also grateful for the support from the
author’s family and friends.

REFERENCES

[1] Rouse, M. (2020, February 11). What is IoT (Internet of Things) and
How Does it Work? Retrieved December 21, 2020, from
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Thing
s-IoT

[2] Yuan, M. (2020, January 7). What is MQTT? Why use MQTT?
Retrieved December 21, 2020, from
https://developer.ibm.com/technologies/messaging/articles/iot-mqtt-why-
good-for-iot/

[3] S. Andy, B. Rahardjo and B. Hanindhito, "Attack scenarios and security
analysis of MQTT communication protocol in IoT system," 2017 4th
International Conference on Electrical Engineering, Computer Science
and Informatics (EECSI), Yogyakarta, 2017, pp. 1-6, doi:
10.1109/EECSI.2017.8239179.

[4] Buchanan, B. (2018, December 28). AES Is Great ... But We Need A
Fall-back: Meet ChaCha and Poly1305. Retrieved December 21, 2020,
from
https://medium.com/asecuritysite-when-bob-met-alice/aes-is-great-but-w
e-need-a-fall-back-meet-chacha-and-poly1305-76ee0ee61895

[5] Popov, A. (2015, February). Prohibiting RC4 Cipher Suites. Retrieved
December 21, 2020, from https://tools.ietf.org/html/rfc7465

[6] MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken
Borgendale, and Rahul Gupta. 07 March 2019. OASIS Standard.

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://developer.ibm.com/technologies/messaging/articles/iot-mqtt-why-good-for-iot/
https://developer.ibm.com/technologies/messaging/articles/iot-mqtt-why-good-for-iot/
https://medium.com/asecuritysite-when-bob-met-alice/aes-is-great-but-we-need-a-fall-back-meet-chacha-and-poly1305-76ee0ee61895
https://medium.com/asecuritysite-when-bob-met-alice/aes-is-great-but-we-need-a-fall-back-meet-chacha-and-poly1305-76ee0ee61895
https://tools.ietf.org/html/rfc7465

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html. Latest
version: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[7] McGrew, D. (2008, January). An Interface and Algorithms for
Authenticated Encryption. Retrieved December 17, 2020, from
https://tools.ietf.org/html/rfc5116

[8] Tutorialspoint. (n.d.). Message Authentication. Retrieved December 17,
2020, from
https://www.tutorialspoint.com/cryptography/message_authentication.ht
m

[9] Nir, Y., & Langley, A. (2015, May). ChaCha20 and Poly1305 for IETF
Protocols. Retrieved December 18, 2020, from
https://tools.ietf.org/html/rfc7539

[10] Bernstein, D. J. (n.d.). ChaCha, a variant of Salsa20. Retrieved December
18, 2020, from https://cr.yp.to/chacha/chacha-20080128.pdf

[11] Neves, S. (2009, October 7). Faster ChaCha implementations for Intel
processors. Retrieved December 18, 2020, from
https://web.archive.org/web/20161128095454/https://eden.dei.uc.pt/~sne
ves/chacha/chacha.html

[12] Arciszewski, S. (2018, December 18). XChaCha: EXtended-nonce
ChaCha and AEAD_XChaCha20_Poly1305. Retrieved December 18,
2020, from https://tools.ietf.org/html/draft-arciszewski-xchacha-03

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Desember 2020

Ignatius Timothy Manullang
13517044

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://tools.ietf.org/html/rfc5116
https://www.tutorialspoint.com/cryptography/message_authentication.htm
https://www.tutorialspoint.com/cryptography/message_authentication.htm
https://tools.ietf.org/html/rfc7539
https://cr.yp.to/chacha/chacha-20080128.pdf
https://web.archive.org/web/20161128095454/https://eden.dei.uc.pt/~sneves/chacha/chacha.html
https://web.archive.org/web/20161128095454/https://eden.dei.uc.pt/~sneves/chacha/chacha.html
https://tools.ietf.org/html/draft-arciszewski-xchacha-03

